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Introduction 
 
There is currently much interest in the unsteady aerodynamics of flows relevant to rotorcraft 
(manned and unmanned) air vehicles. The flow fields in these applications exhibit unsteady 
separation followed by the formation of dynamic-stall-like vortices whose evolution and 
interaction with flexible aerodynamic surfaces have a significant impact on flight stability and 
performance. Analysis of these flows is complicated further by their mixed laminar transitional 
turbulent character at moderate Reynolds numbers, as well as by the broad range of possible 
parameters, kinematics, and configurations. To facilitate progress in the understanding and 
prediction of the relevant fluid dynamic mechanisms, it is natural to consider methods that 
provide simplification of the flow phenomena by separating them into individual modes. The 
technique of Proper Orthogonal Decomposition (POD) is a popular way of accomplishing this 
task. However, while POD is capable of extracting the most energetic parts of the flow field, it 
has been shown to lack ability of highlighting subtle, oscillatory phenomena that are nevertheless 
implicated in important physical processes such as the shear layer separation. 
 
Unsteady flows over plunging and pitching airfoils with large excursions in effective angle of 
attack exhibit the phenomenon termed dynamic stall, a process characterized by unsteady 
separation and by the formation of large-scale leading-edge and trailing-edge vortices, which 
exert difficult-to-predict variations in aerodynamic loads. Comprehensive reviews of this 
phenomenon, first discovered and studied extensively in the context of helicopter rotor blades, 
has been given in [1,3,8]. 
 
The initial research has suggested existence of high-frequency effects in leading edge vortex 
shedding events, not present in the static stall case. The purpose of the project was to advance 
this approach using Aimdyn's development of Koopman operator mode decomposition 
techniques. 
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Computation of Koopman Modes 
 
Koopman mode decomposition is based on the surprising fact, discovered in [5], that normal 
modes of linear oscillations have its natural analogue - Koopman modes - in the context of 
nonlinear dynamics. To pursue this analogy, one must change the representation of the system 
from the state-space representation to the dynamics governed by the linear Koopman operator 
([4]) on an infinite-dimensional space of observables. Contrary to the proper orthogonal 
decomposition, the dynamic mode decomposition contains not only information about coherent 
structures, but also about their temporal evolution. 
 
Based on snapshots of the flow, we can approximate the Koopman Modes using an Arnoldi-like 
algorithm sometimes called dynamic mode decomposition (DMD) ([9,10]) which computes 
eigenvalues based on the so-called companion matrix. 
 
Given a sequence of equispaced in time snapshots from numerical simulations or physical 
experiments, with ∆𝑡 being the time interval between snapshots, a data matrix is formed with 
columns that represent the individual data samples 𝑢𝑗 ∈ 𝑅𝑛, 𝑗 = 0, … ,𝑚, with 𝑗 representing time 
𝑗∆𝑡. The companion matrix is then defined as: 

 
where 𝑐𝑖, 𝑖 = 0, … ,𝑚 − 1 are such that: 

 
and 𝑟 is the residual vector. 
 
The spectrum of the Koopman operator restricted to the subspace spanned by 𝑢𝑗  is equal to the 
spectrum of the infinite-dimensional companion matrix and the associated Koopman modes are 
given by 𝐾𝑎 (provided that 𝑎 does not belong to the null space of 𝐾), where 
𝐾 = [𝑢0,𝑢1, … ,𝑢𝑚−1] is the column matrix (vector-valued) of observables snapshots at times 
0,∆𝑡, … , (𝑚− 1)∆𝑡 and 𝑎 is an eigenvector of the shift operator restricted to Krylov subspace 
spanned by 𝑢𝑖 which the Companion matrix is an approximation of. The approximate Koopman 
eigenvalues and eigenvectors obtained by the Arnoldi's algorithm are called Ritz eigenvalues and 
eigenvectors. 
 
The standard Arnoldi-type algorithm to calculate the Ritz eigenvalues 𝜆𝑗 and eigenfunctions 𝑣𝑗  is 
as follows: 
 
1.  Define 𝐾 = [𝑢0,𝑢1, … ,𝑢𝑚−1]. 
 
2. Find constants 𝑐𝑗 such that: 
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This can be done by defining 𝑐 = 𝐾+𝑢𝑚, where 𝐾+ is the pseudo inverse of 𝐾. 
 
3.  Define the companion matrix 𝐶 as above and find its eigenvalues and eigenvectors: 

 
where eigenvectors are columns of 𝑇−1. Note that the Vandermonde matrix 𝑇�  

 
diagonalizes the companion matrix 𝐶 , as long as the eigenvalues 𝜆1, … , 𝜆𝑚 are distinct. 
 
4. Define 𝑣𝑗  to be the columns of 𝑉 = 𝐾𝑇�−1. 
 
Then, the Arnoldi-type Koopman Mode Decomposition gives: 

 
 
In order for the result of an Arnoldi-type method to give a good approximation of the Koopman 
modes, the companion matrix 𝐶 should be a good matrix representation of the projection of the 
Koopman operator on a Krylov subspace. The algorithm described above uses a least-square 
approximation. However, the known properties of the Koopman operator are ignored in the 
above algorithm: 
 
 Constant functions are eigenfunctions of the Koopman operator at eigenvalue 1. Hence the 

Companion matrix as an approximation of the Koopman operator should have an eigenvalue 
at 1. This condition can be translated as: ∑ 𝑐𝑗𝑚−1

𝑗=0 = 1. 
 
 When the signal is periodic on the attractor such that 𝑢0 = 𝑢𝑚, the DMD computation should 

reduce to Discrete Fourier Transform [2]. In that case, the companion matrix coefficient 
should be 𝑐0 = 1, 𝑐𝑗 = 0,∀𝑗 > 0 and the algorithm computing the Koopman Modes should 
be able to approximate those values of 𝑐𝑗 automatically. 

 
A new Arnoldi-type algorithm has been developed at Aimdyn. It is similar to the standard one 
but includes the known properties described above by replacing step 2 of the algorithm where the 
constants 𝑐𝑗 are computed by: 

𝑐 = 𝐾�+𝑢�𝑚, 
where 

 
and 𝐾�+ is the pseudo inverse of 𝐾�. 
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Analysis of a 2D simulation data for 1 period of airfoil oscillation 
 
By using the described above techniques a simulation data set from Dr. Miguel Visbal at the 
AFRL was analyzed. The files were 360 snapshots of 2D grid and flow data for 1 period of 
airfoil oscillation. The flow was spanwise-averaged so that small scales structures are reduced. 
The obtained data was processed for plotting (see Figure 1 that shows u horizontal velocity, v 
vertical velocity, w out of plane velocity, p pressure and rho density at phase π/2). 
 

 
Figure 1. Dynamic Stall of a Plunging Airfoil 2D simulation data sets at phase π/2 of the 

plunging motion, u horizontal velocity, v vertical velocity, w out of plane velocity, p pressure 
and rho density. 

 
Due to the large size of the data set, using Matlab for data processing reaches its limit. AIMdyn’s 
team implemented the Koopman Mode Decomposition algorithm in C++ to be able to process 
very large sets of data. 
 
A new, Arnoldi-type method developed by Aimdyn was used for Koopman Mode 
Decomposition. Figure 2 shows Fourier and KMD spectrum for u-velocity. 

 
 

Figure 2. Fourier and KMD spectrum for u-velocity. (left) Frequencies from 0 to 0.5. (right) 
Close-up for frequencies from 0 to 0.04. The amplitude is calculated as the norm of all 

amplitudes over all spatial points. FFT is in black; unstable KM spectrum is red; stable KM 
spectrum is green. 
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The obtained Koopman mode eigenvalues are shown in Figure 3. 
 

  
Figure 3. Koopman Mode Eigenvalues. 

 
Fourier and KMD spectrum for several regions of interest for u velocity (see Figure 4) are shown 
in Figure 5. 

 
Figure 4. Regions of interest for u velocity. 

 
R1 R2 R3 R4 

    
 
Figure 5. Fourier and KMD spectrum for four regions of interest for u-velocity. FFT is in black; 

unstable KM spectrum is red; stable KM spectrum is green. 
 
The frequency spectrum and the magnitude of modes corresponding to frequency 0.027 Hz and 
frequency 0.011 Hz for the u-velocity probe with coordinates (1.04; 0.50) are shown in Figure 6. 
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Figure 6. Fourier and KMD spectrum for a point of u-velocity with (1.04; 0.50) coordinates. FFT 
is in black; KM spectrum is blue. Magnitude for the Koopman mode corresponding to frequency 

0.027 Hz and frequency 0.011 Hz. 
 
Using Koopman mode decomposition technique processing of a 2D data set the team members 
studied details of the physics of dynamic stall. 
 
 
 
Similarity of the Koopman mode decomposition of the dynamic stall and the cylinder wake 
with oscillating Re number forcing 
 
We developed a model system that is capable of revealing physics of the dynamic stall in a 
simpler setting. The model system is a cylinder in an incoming oscillatory flow. It provided us 
with some remarkable insight. In the following we describe the simulation and some results. 
 
The cylinder wake simulation was provided by Dr. Bryan Glaz at the U.S. Army Research 
Laboratory. The cylinder was 0.002m in diameter. Flow snapshots were outputted starting at the 
25th time step, up to the 60,000th time step in increments of 25 time steps (each time step is 1e-4 
s). The total time length corresponds to 12 periods of the driving frequency, which is 2Hz. The 
number of nodes in the grid is 29954. 
 
From 0.0s to 0.5s (i.e. 5000 iterations) Reynolds number (Re) was 58.3 that corresponds to 
incoming velocity of 0.5 m/s. The critical Re for a cylinder is about Re~40 when it starts 
exhibiting the von Karman wake instability. So the interval from 0 to 0.5 s at Re=58.3 
corresponds to the Landau equation when the external input is greater than the bifurcation value. 
Then, starting at 0.5 seconds, the Re is being oscillated by oscillating incoming velocity. The 
oscillating Re corresponded to Re = 58.3 + 35*sin(2pi*omega*t), where omega corresponded to 
2 Hz. The reason 35 was selected for the oscillating Re amplitude is because a large enough 
amplitude was needed such that the Re would oscillate above and below the critical value 
predicted by the regular Landau equation. The reason 2 Hz was selected is that it's an order of 
magnitude slower than the von Karman vortex frequency, which is about 39 Hz for Re = 58.3. It 
was planned so that the driving frequency to be about an order of magnitude lower than the flow 
instability frequency because the dynamic stall driving frequency is about 1-2 orders of 
magnitude slower than the shear layer, wake dynamics for the airfoil. So the goal was to setup a 
cylinder problem where there is a significant separation in time scales. 
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The Koopman spectrum plots are shown in Figure 7. It is remarkable how the spectrum shown at 
the bottom becomes broad upon introduction of the low-frequency oscillation, in contrast to the 
clean peak at 40 for the von Karman vortex flow in the top of that figure. An analytical 
understanding of that is lacking, despite a number of dynamical system bifurcation studies (e.g. 
[7]) and we plan to investigate it in the future work. 
 

 

 
 

Figure 7. Spectrum of von Karman vortex shedding flow around a cylinder (top) and the flow 
around the same cylinder when the incoming velocity is oscillated (bottom). Note the broadening 

of the spectrum, similar to the pitching wing spectrum, and the high frequency component 
around 120. 

 
The interesting spectrum-broadening effect for flow around cylinder in incoming flow of 
oscillating magnitude leads us to believe that further investigation of this model might shed 
physical insight on the wing pitching and plunging model, that also has broad spectrum. 
 
In [2], the observation is made that subtracting the mean of the sequence of snapshots leads to 
the result of all possible eigenvalues being on the unit circle, the companion matrix analysis 
reducing essentially to the Discrete Fourier Transform, however in [6], it is shown that this is 
true for finite 𝑚 only if the observable snapshots are periodic with 𝑢0 = 𝑢𝑚. 
 
For the described above cylinder wake simulation the Koopman Mode Decomposition (by using 
Arnoldi-type algorithm) was performed for: 
case A: subtracting the mean of the sequence of snapshots; 
case B: without subtracting the mean of the sequence of snapshots. 
 
Case B was studied for the two following sub-cases: 
case B1: not-normalizing each column of the inverse to the Vandermonde matrix 𝑇�−1; 
case B2: normalizing each column of the inverse to the Vandermonde matrix 𝑇�−1. 
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Note that in the case of subtracting the mean, the normalized and not-normalized cases are very 
similar. 
 
Figure 8 shows Fourier and KMD spectrum for u-velocity for the whole simulation time for 
cases A, B1 and B2. 
 

 
 
 

 
 
 

 
 

Figure 8. Fourier and KMD spectrum for u-velocity for the whole simulation time. FFT is in 
black; KM spectrum is red. 

 
 
 
 

case A 

case B1 

case B2 
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The obtained Koopman mode eigenvalues are shown in Figure 9. 
 

case A case B1 case B2 

   
 

Figure 9. Koopman Mode Eigenvalues for u-velocity for the whole simulation time. 
 
Figure 10 shows the DMD spectrum in frequency w, exponential rate mu plane. 
 

case A case B1 case B2 

   
 

Figure 10. DMD spectrum in frequency w, exponential rate mu plane for u-velocity for the 
whole simulation time. 

 
Magnitude, phase, real part and imaginary part for the Koopman modes corresponding to 
frequency 2 and 63.83 Hz for case A are shown in Figure 11. 
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Figure 11. Magnitude, phase, real part and imaginary part for the Koopman mode for u-velocity 
for the whole simulation time for case A corresponding to frequency 2 Hz (left) and 63.83 Hz 

(right). 
 
The recomposition of signal using 20 pairs of the highest magnitude modes sorted by abs of 
norm of Vj has been performed. Figure 12 shows the reconstructed signal (red) vs the original 
data (blue) for the random location and the dependence of the mean of the recomposition error 
(L2 norm of the difference between signal and recomposed signal divided by the L2 norm of the 
signal) on the number of modes used. 

case A case B1 case B2 

   

   
Figure 12. (Top) The reconstructed signal (red) vs the original data (blue) for a random location, 

(Bottom) the dependence of the mean of the recomposition error (L2 norm of the difference 
between signal and recomposed signal divided by the L2 norm of the signal) on the number of 

modes used for u velocity for the whole simulation time. 
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Figure 13 shows the histogram of the recomposition error over all locations if using only 4 
modes (frequencies 2 Hz, -2 Hz, 63.83 Hz and -63.83 Hz) and the recomposition of signal that 
gives the median error for case A. 

  
Figure 13. (Left) The histogram of the recomposition error over all locations if using only 4 

modes (frequency 2, -2, 63.83 and -63.83), (Right) the recomposition of signal (red – 
reconstructed signal, blue – data) that gives the median error for u velocity for the whole 

simulation time for case A. 
 
Figure 14 shows Fourier and KMD spectrum for u-velocity for the first period of the simulation 
time after removing first 500 iterations for cases A, B1 and B2. 
 

 

 
 

Figure 14. Fourier and KMD spectrum for u-velocity for the first period of the simulation time. 
FFT is in black; KM spectrum is red. 
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The obtained Koopman mode eigenvalues are shown in Figure 15. 
 

case A case B1 case B2 

   
 
Figure 15. Koopman Mode Eigenvalues for u-velocity for the first period of the simulation time. 
 
Figure 16 shows the DMD spectrum in frequency w, exponential rate mu plane. 
 

case A case B1 case B2 

   
 
Figure 16. DMD spectrum in frequency w, exponential rate mu plane for u-velocity for the first 

period of the simulation time. 
 
Magnitude, phase, real part and imaginary part for the Koopman modes for case A corresponding 
to frequency 2 Hz and 38 Hz are shown in Figure 17. 
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Figure 17. Magnitude, phase, real part and imaginary part for the Koopman mode for u-velocity 
for the first period of the simulation time for case A corresponding to frequency 2 Hz (left) and 

38 Hz (right). 
 
The recomposition of signal using 20 pairs of the highest magnitude modes sorted by abs of 
norm of Vj has been performed. Figure 18 shows the reconstructed signal (red) vs the original 
data (blue) for the random location. 
 

case A case B1 case B2 

   
 

Figure 18. The reconstructed signal (red) vs the original data (blue) for a random location for u 
velocity for the first period of the simulation time. 

 
The Koopman Mode Decomposition of the model system that we have pursued shows 
remarkable ability to reconstruct signal coming from such a broad-spectrum flow. 
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Conclusions 
 
The initial analysis of dynamic stall using the methods of Koopman operator theory was 
performed. This research guided by dynamical systems methods and efficient numerical methods 
for Koopman Mode Decomposition lead to some interesting outcomes. Among those are insight 
into the physical effects of the oscillatory nature of the incoming velocity that the wing 
experiences due to pitch or plunging. For example, the examination of a model system - a 
cylinder in an incoming oscillatory flow - showed some of the physical effects (e.g. broadening 
of the spectrum) observed in the pitching airfoil case are present in the model system and shed 
light on the dynamics of aspects of pitching airfoil dynamics as a nonlinear interaction of the 
forcing by the oscillating incoming flow frequency and natural frequency of vortex shedding 
dynamics. 
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